این کار باعث حذف صفحه ی "The Verge Stated It's Technologically Impressive"
می شود. لطفا مطمئن باشید.
Announced in 2016, Gym is an open-source Python library designed to facilitate the development of support knowing algorithms. It aimed to standardize how environments are defined in AI research, making published research study more quickly reproducible [24] [144] while providing users with a simple user interface for interacting with these environments. In 2022, new developments of Gym have been relocated to the library Gymnasium. [145] [146]
Gym Retro
Released in 2018, Gym Retro is a platform for reinforcement learning (RL) research on video games [147] using RL algorithms and study generalization. Prior RL research focused mainly on enhancing representatives to fix single tasks. Gym Retro gives the capability to generalize in between video games with similar principles however different appearances.
RoboSumo
Released in 2017, RoboSumo is a virtual world where humanoid metalearning robotic agents at first do not have knowledge of how to even walk, however are offered the goals of learning to move and to press the opposing agent out of the ring. [148] Through this adversarial learning procedure, the representatives learn how to adjust to altering conditions. When an agent is then eliminated from this virtual environment and put in a new virtual environment with high winds, the agent braces to remain upright, recommending it had learned how to stabilize in a generalized method. [148] [149] OpenAI's Igor Mordatch argued that competition in between agents might develop an intelligence "arms race" that might increase an agent's capability to work even outside the context of the competitors. [148]
OpenAI 5
OpenAI Five is a team of 5 OpenAI-curated bots utilized in the competitive five-on-five video game Dota 2, that find out to play against human gamers at a high skill level entirely through experimental algorithms. Before ending up being a team of 5, the very first public presentation occurred at The International 2017, the annual premiere championship tournament for the video game, where Dendi, a professional Ukrainian player, lost against a bot in a live individually match. [150] [151] After the match, CTO Greg Brockman explained that the bot had learned by playing against itself for two weeks of actual time, which the learning software application was an action in the instructions of creating software application that can manage complicated tasks like a surgeon. [152] [153] The system utilizes a kind of reinforcement learning, as the bots learn in time by playing against themselves hundreds of times a day for months, and are rewarded for actions such as eliminating an opponent and taking map objectives. [154] [155] [156]
By June 2018, the ability of the bots expanded to play together as a full team of 5, and they were able to defeat teams of amateur and semi-professional players. [157] [154] [158] [159] At The International 2018, OpenAI Five played in 2 exhibition matches against professional gamers, but ended up losing both video games. [160] [161] [162] In April 2019, OpenAI Five defeated OG, the reigning world champs of the game at the time, 2:0 in a live exhibit match in San Francisco. [163] [164] The bots' final public look came later on that month, where they played in 42,729 total video games in a four-day open online competitors, winning 99.4% of those games. [165]
OpenAI 5's mechanisms in Dota 2's bot gamer shows the challenges of AI systems in multiplayer online fight arena (MOBA) games and how OpenAI Five has shown making use of deep support learning (DRL) agents to attain superhuman competence in Dota 2 matches. [166]
Dactyl
Developed in 2018, Dactyl uses maker discovering to train a Shadow Hand, bytes-the-dust.com a human-like robotic hand, to manipulate physical objects. [167] It discovers totally in simulation utilizing the exact same RL algorithms and training code as OpenAI Five. OpenAI tackled the things orientation issue by utilizing domain randomization, a simulation approach which exposes the student to a variety of experiences instead of attempting to fit to truth. The set-up for Dactyl, aside from having movement tracking video cameras, also has RGB video cameras to allow the robot to control an arbitrary things by seeing it. In 2018, OpenAI revealed that the system was able to control a cube and an octagonal prism. [168]
In 2019, OpenAI showed that Dactyl might resolve a Rubik's Cube. The robotic was able to solve the puzzle 60% of the time. Objects like the Rubik's Cube present complicated physics that is harder to model. OpenAI did this by enhancing the effectiveness of Dactyl to perturbations by utilizing Automatic Domain Randomization (ADR), a simulation technique of producing progressively more tough environments. ADR differs from manual domain randomization by not needing a human to specify randomization ranges. [169]
API
In June 2020, OpenAI revealed a multi-purpose API which it said was "for accessing brand-new AI designs established by OpenAI" to let designers call on it for "any English language AI task". [170] [171]
Text generation
The business has popularized generative pretrained transformers (GPT). [172]
OpenAI's initial GPT model ("GPT-1")
The original paper on generative pre-training of a transformer-based language model was written by Alec Radford and his associates, and released in preprint on OpenAI's website on June 11, 2018. [173] It showed how a generative model of language could obtain world knowledge and process long-range dependences by pre-training on a varied corpus with long stretches of contiguous text.
GPT-2
Generative Pre-trained Transformer 2 ("GPT-2") is a without supervision transformer language design and the follower to OpenAI's original GPT design ("GPT-1"). GPT-2 was announced in February 2019, with just restricted demonstrative variations at first launched to the general public. The full variation of GPT-2 was not instantly released due to concern about possible misuse, bio.rogstecnologia.com.br consisting of applications for composing phony news. [174] Some experts expressed uncertainty that GPT-2 postured a substantial risk.
In response to GPT-2, the Allen Institute for Artificial Intelligence responded with a tool to find "neural fake news". [175] Other scientists, such as Jeremy Howard, cautioned of "the technology to totally fill Twitter, email, and the web up with reasonable-sounding, context-appropriate prose, which would hush all other speech and be difficult to filter". [176] In November 2019, OpenAI released the complete variation of the GPT-2 language design. [177] Several sites host interactive demonstrations of different instances of GPT-2 and other transformer models. [178] [179] [180]
GPT-2's authors argue without supervision language designs to be general-purpose students, highlighted by GPT-2 attaining modern accuracy and perplexity on 7 of 8 zero-shot jobs (i.e. the model was not further trained on any task-specific input-output examples).
The corpus it was trained on, called WebText, contains somewhat 40 gigabytes of text from URLs shared in Reddit submissions with at least 3 upvotes. It prevents certain problems with word tokens by utilizing byte pair encoding. This permits representing any string of characters by encoding both individual characters and multiple-character tokens. [181]
GPT-3
First explained in May 2020, Generative Pre-trained [a] Transformer 3 (GPT-3) is an unsupervised transformer language design and the follower to GPT-2. [182] [183] [184] OpenAI mentioned that the full variation of GPT-3 contained 175 billion parameters, [184] two orders of magnitude larger than the 1.5 billion [185] in the complete variation of GPT-2 (although GPT-3 designs with as few as 125 million parameters were likewise trained). [186]
OpenAI specified that GPT-3 was successful at certain "meta-learning" tasks and might generalize the function of a single input-output pair. The GPT-3 release paper provided examples of translation and cross-linguistic transfer learning between English and Romanian, and it-viking.ch between English and German. [184]
GPT-3 considerably improved benchmark outcomes over GPT-2. OpenAI warned that such scaling-up of language models might be approaching or experiencing the basic capability constraints of predictive language designs. [187] Pre-training GPT-3 needed several thousand petaflop/s-days [b] of calculate, compared to tens of petaflop/s-days for the full GPT-2 model. [184] Like its predecessor, [174] the GPT-3 trained model was not right away launched to the general public for issues of possible abuse, although OpenAI planned to allow gain access to through a paid cloud API after a two-month free personal beta that started in June 2020. [170] [189]
On September 23, 2020, GPT-3 was licensed specifically to Microsoft. [190] [191]
Codex
Announced in mid-2021, Codex is a descendant of GPT-3 that has in addition been trained on code from 54 million GitHub repositories, [192] [193] and is the AI powering the code autocompletion tool GitHub Copilot. [193] In August 2021, an API was released in personal beta. [194] According to OpenAI, the model can develop working code in over a dozen programs languages, most successfully in Python. [192]
Several concerns with problems, style flaws and security vulnerabilities were mentioned. [195] [196]
GitHub Copilot has been implicated of producing copyrighted code, without any author attribution or license. [197]
OpenAI announced that they would cease assistance for Codex API on March 23, 2023. [198]
GPT-4
On March 14, 2023, OpenAI announced the release of Generative Pre-trained Transformer 4 (GPT-4), capable of accepting text or image inputs. [199] They announced that the upgraded technology passed a simulated law school bar test with a score around the top 10% of test takers. (By contrast, GPT-3.5 scored around the bottom 10%.) They said that GPT-4 might also check out, examine or create as much as 25,000 words of text, and bio.rogstecnologia.com.br compose code in all major programs languages. [200]
Observers reported that the model of ChatGPT utilizing GPT-4 was an improvement on the previous GPT-3.5-based version, with the caveat that GPT-4 retained some of the problems with earlier revisions. [201] GPT-4 is also efficient in taking images as input on ChatGPT. [202] OpenAI has declined to reveal various technical details and data about GPT-4, such as the accurate size of the model. [203]
GPT-4o
On May 13, 2024, OpenAI revealed and released GPT-4o, which can process and generate text, images and audio. [204] GPT-4o attained advanced lead to voice, multilingual, and vision benchmarks, setting new records in audio speech recognition and translation. [205] [206] It scored 88.7% on the Massive Multitask Language Understanding (MMLU) standard compared to 86.5% by GPT-4. [207]
On July 18, 2024, OpenAI launched GPT-4o mini, a smaller version of GPT-4o changing GPT-3.5 Turbo on the ChatGPT user interface. Its API costs $0.15 per million input tokens and $0.60 per million output tokens, compared to $5 and $15 respectively for GPT-4o. OpenAI anticipates it to be particularly useful for business, startups and designers looking for to automate services with AI representatives. [208]
o1
On September 12, 2024, OpenAI released the o1-preview and o1-mini models, which have actually been created to take more time to consider their reactions, leading to greater accuracy. These designs are especially reliable in science, coding, and thinking jobs, and were made available to ChatGPT Plus and Employee. [209] [210] In December 2024, o1-preview was replaced by o1. [211]
o3
On December 20, 2024, hb9lc.org OpenAI revealed o3, the follower of the o1 thinking design. OpenAI likewise unveiled o3-mini, a lighter and faster version of OpenAI o3. Since December 21, 2024, this model is not available for public use. According to OpenAI, they are testing o3 and o3-mini. [212] [213] Until January 10, 2025, security and security researchers had the opportunity to obtain early access to these models. [214] The design is called o3 rather than o2 to prevent confusion with telecoms companies O2. [215]
Deep research
Deep research study is an agent developed by OpenAI, unveiled on February 2, 2025. It leverages the capabilities of OpenAI's o3 model to carry out substantial web browsing, data analysis, and synthesis, delivering detailed reports within a timeframe of 5 to 30 minutes. [216] With searching and garagesale.es Python tools allowed, it reached a precision of 26.6 percent on HLE (Humanity's Last Exam) standard. [120]
Image category
CLIP
Revealed in 2021, CLIP (Contrastive Language-Image Pre-training) is a model that is trained to examine the semantic similarity between text and images. It can notably be utilized for image category. [217]
Text-to-image
DALL-E
Revealed in 2021, DALL-E is a Transformer design that creates images from textual descriptions. [218] DALL-E utilizes a 12-billion-parameter variation of GPT-3 to interpret natural language inputs (such as "a green leather handbag formed like a pentagon" or "an isometric view of a sad capybara") and produce matching images. It can develop images of realistic objects ("a stained-glass window with a picture of a blue strawberry") in addition to things that do not exist in reality ("a cube with the texture of a porcupine"). As of March 2021, no API or code is available.
DALL-E 2
In April 2022, OpenAI announced DALL-E 2, an upgraded variation of the design with more practical results. [219] In December 2022, OpenAI released on GitHub software for Point-E, a brand-new basic system for converting a text description into a 3-dimensional model. [220]
DALL-E 3
In September 2023, OpenAI revealed DALL-E 3, a more powerful model better able to create images from complicated descriptions without manual timely engineering and render complicated details like hands and text. [221] It was launched to the general public as a ChatGPT Plus function in October. [222]
Text-to-video
Sora
Sora is a text-to-video design that can create videos based upon brief detailed triggers [223] as well as extend existing videos forwards or in reverse in time. [224] It can create videos with resolution as much as 1920x1080 or 1080x1920. The maximal length of created videos is unknown.
Sora's development group named it after the Japanese word for "sky", to represent its "endless imaginative potential". [223] Sora's technology is an adjustment of the technology behind the DALL · E 3 text-to-image design. [225] OpenAI trained the system utilizing publicly-available videos along with copyrighted videos certified for that purpose, however did not expose the number or the precise sources of the videos. [223]
OpenAI showed some Sora-created high-definition videos to the general public on February 15, 2024, mentioning that it might generate videos as much as one minute long. It also shared a technical report highlighting the methods utilized to train the model, and the design's capabilities. [225] It acknowledged some of its drawbacks, including struggles replicating complicated physics. [226] Will Douglas Heaven of the MIT Technology Review called the presentation videos "outstanding", but noted that they should have been cherry-picked and might not represent Sora's typical output. [225]
Despite uncertainty from some scholastic leaders following Sora's public demo, notable entertainment-industry figures have actually revealed considerable interest in the innovation's potential. In an interview, actor/filmmaker Tyler Perry revealed his awe at the innovation's ability to generate realistic video from text descriptions, citing its possible to reinvent storytelling and material development. He said that his enjoyment about Sora's possibilities was so strong that he had chosen to pause prepare for broadening his Atlanta-based film studio. [227]
Speech-to-text
Whisper
Released in 2022, Whisper is a general-purpose speech recognition design. [228] It is trained on a large dataset of varied audio and is also a multi-task model that can perform multilingual speech acknowledgment in addition to speech translation and language recognition. [229]
Music generation
MuseNet
Released in 2019, MuseNet is a deep neural net trained to anticipate subsequent musical notes in MIDI music files. It can produce tunes with 10 instruments in 15 designs. According to The Verge, a tune created by MuseNet tends to begin fairly but then fall into chaos the longer it plays. [230] [231] In pop culture, preliminary applications of this tool were utilized as early as 2020 for the web mental thriller Ben Drowned to develop music for the titular character. [232] [233]
Jukebox
Released in 2020, Jukebox is an open-sourced algorithm to produce music with vocals. After training on 1.2 million samples, the system accepts a category, artist, and a snippet of lyrics and outputs tune samples. OpenAI specified the tunes "show local musical coherence [and] follow conventional chord patterns" however acknowledged that the songs lack "familiar larger musical structures such as choruses that repeat" which "there is a significant gap" between Jukebox and human-generated music. The Verge stated "It's technically remarkable, even if the results seem like mushy versions of tunes that may feel familiar", while Business Insider specified "remarkably, a few of the resulting songs are memorable and sound genuine". [234] [235] [236]
Interface
Debate Game
In 2018, OpenAI launched the Debate Game, which teaches devices to dispute toy problems in front of a human judge. The purpose is to research whether such a method may assist in auditing AI decisions and in developing explainable AI. [237] [238]
Microscope
Released in 2020, Microscope [239] is a collection of visualizations of every substantial layer and neuron of eight neural network designs which are often studied in interpretability. [240] Microscope was developed to evaluate the features that form inside these neural networks easily. The models consisted of are AlexNet, VGG-19, various versions of Inception, and various variations of CLIP Resnet. [241]
ChatGPT
Launched in November 2022, systemcheck-wiki.de ChatGPT is an expert system tool built on top of GPT-3 that provides a conversational interface that enables users to ask concerns in natural language. The system then reacts with a response within seconds.
این کار باعث حذف صفحه ی "The Verge Stated It's Technologically Impressive"
می شود. لطفا مطمئن باشید.